
Exploring the possibility of a hipSYCL-based implementation of
oneAPI

Aksel Alpay Bálint Soproni Holger Wünsche Vincent Heuveline
Heidelberg University

Speaker: Aksel Alpay

IWOCL ’22

1 / 35



Introduction

2 / 35



oneAPI

Open specification for platform built around:
▶ SYCL 2020
▶ Accelerated libraries (e.g. oneMKL, oneDPL, oneDNN, …)
▶ Low-level building blocks (Level Zero)

Implementations:
▶ Reference implementation led by Intel using DPC++ SYCL implementation
▶ (Partial) port to NVIDIA led by Codeplay using DPC++ CUDA backend
▶ (Partial) port to AMD led by Codeplay using DPC++ HIP backend (new)

3 / 35



Idea: Leverage hipSYCL to run oneAPI code on AMD, NVIDIA, CPUs

https://www.urz.uni-heidelberg.de/en/newsroom/
oneapi-academic-center-of-excellence-established-at-the-heidelberg-university-computing-centre-urz

4 / 35

https://www.urz.uni-heidelberg.de/en/newsroom/oneapi-academic-center-of-excellence-established-at-the-heidelberg-university-computing-centre-urz
https://www.urz.uni-heidelberg.de/en/newsroom/oneapi-academic-center-of-excellence-established-at-the-heidelberg-university-computing-centre-urz


Motivation

Being able to use multiple, independent compilers brings benefits:
▶ Users can test code with multiple compilers
▶ Can reveal bugs in user code and implementations
▶ Can reveal ambiguities in the specification

Can oneAPI be implemented with a compiler that is not derived from DPC++?

▶ Attempt proof-of-concept implementation with hipSYCL
▶ First attempt to implement oneAPI independently from DPC++

5 / 35



Goals

When can we conclude that oneAPI can indeed be implemented with hipSYCL?
oneAPI component Goal
Programming model SYCL 2020 must be reasonably well supported:

→ Common code must compile
→ At least 80% of native performance

Libraries oneAPI libraries must be implementable with hipSYCL.
→ Demonstrate using oneMKL BLAS domain.

Building blocks Level Zero must be supported
→ Add Level Zero runtime backend

6 / 35



Introduction to hipSYCL

7 / 35



hipSYCL architecture

▶ Multi-backend open-source¹ SYCL implementation
▶ Can integrate and ride on top of various already existing toolchains
▶ Consists of three main components:

1. Compiler component (syclcc driver + clang/LLVM components)
2. Runtime (device management, task graph management, scheduling, …)
3. libkernel: Multi-backend header libarary that can be used inside kernels (math

builtins, group algorithms, …)

¹https://github.com/illuhad/hipSYCL
8 / 35

https://github.com/illuhad/hipSYCL


Multiple kinds of compilation flows:
▶ Library-only (OpenMP, nvc++)
▶ Single-pass with compiler

acceleration for CPU
▶ Integrated multipass
▶ Explicit multipass

9 / 35



Runtime design

▶ User code constructs a kernel launcher callable for each backend
▶ Runtime invokes kernel launcher → generic runtime can invoke kernels using

language extensions (e.g. CUDA’s kernel<<<>>>())
10 / 35



Experimental Setup

Following software and hardware was used:
▶ hipSYCL 0.9.2 (258dc87) with clang 13
▶ DPC++ 2022.0.1
▶ ROCm 4.5
▶ CUDA 11.6

This work focused on NVIDIA and AMD hardware:
▶ AMD Radeon Pro VII
▶ GeForce GTX 1080Ti

11 / 35



Building on Level Zero

12 / 35



Level Zero backend

▶ Straight-forward to integrate in hipSYCL’s runtime backend model
▶ Some parts of kernel library still unimplemented (group algorithms, reductions,

…)

Figure: hipSYCL Level Zero BabelStream performance on Intel UHD 620 relative to DPC++
performance

Deakin T, Price J, Martineau M, McIntosh-Smith S. Evaluating attainable memory bandwidth of parallel programming models via BabelStream

13 / 35



Programming model: SYCL 2020

14 / 35



SYCL 2020 in hipSYCL

https://github.com/hipSYCL/
featuresupport

hipSYCL supports many SYCL 2020
features!

In this work, we take a closer look at key
features:
▶ Unified Shared Memory (USM)
▶ Group Algorithms and sub-groups
▶ Optional lambda kernel naming

15 / 35

https://github.com/hipSYCL/featuresupport
https://github.com/hipSYCL/featuresupport


Programming model: SYCL 2020
I. Unified Shared Memory

Terminology:
▶ buffer-accessor model: Traditional way of managing memory in SYCL
▶ Explicit USM: Pointer-based, explicit data transfers necessary
▶ Shared USM: Data migrates automatically (see e.g. CUDA unified memory)

16 / 35



Parallel Research Kernels
USM performance

The Parallel Research Kernels²: Memory benchmarks for multiple models

²Rob F. Van der Wijngaart and Timothy G. Mattson. 2014. The Parallel Research Kernels.
17 / 35



Parallel Research Kernels
USM on AMD

▶ ROCm performance with shared allocations leaves a lot to be desired (not
hipSYCL problem)

18 / 35



USM vs buffers

▶ Buffers may have slight additional overhead (only noticable for short-running
problems)
▶ hipSYCL buffers internally use (explicit) USM pointers anyway
▶ Runtime does automatic dependency analysis, data migration with buffers
▶ Don’t conclude that USM is always better!

19 / 35



Programming model: SYCL 2020
II. Sub-groups and group algorithms

Terminology:
▶ Sub-groups: Groups below granularity of work groups. In hipSYCL on GPU,

mapped to warps/wavefronts.
▶ Group algorithms: Algorithmic primitives at sub-group and work group level

(reductions, scans, …)

We contribute a benchmark suite³ to measure group algorithm perf (various
algorithms, data types, supports native libraries e.g. CUB).
▶ Runtime of a kernel of 105 works groups, each with 512 invocations of work

group algorithms

³https://github.com/DieGoldeneEnte/sycl-bench/tree/groupFunctions
20 / 35

https://github.com/DieGoldeneEnte/sycl-bench/tree/groupFunctions


Group inclusive scans
(NVIDIA)

21 / 35



Group inclusive scans (AMD)

▶ Competitive performance for both AMD and NVIDIA

22 / 35



Group reductions (NVIDIA)

23 / 35



Group reductions (AMD)

24 / 35



Group reductions

▶ Reductions are significantly slower on AMD and NVIDIA
▶ Instruction overhead due to group sizes not being known at compile time (SYCL

problem /)
▶ JIT compiling does not work well with hipSYCL because it relies heavily on AOT

compilation
▶ Multi-versioning is difficult in library-only compilation flows
▶ Attributes (reqd_work_group_size) not implementable in library-only flows

Solution: Programming model like hipSYCL’s scoped parallelism which al-
lows implementation to instantiate kernel with different group types → “multi-
versioning” with pure C++ template semantics

▶ How much are real-world applications even dominated by group algorithm
performance?

25 / 35



Programming model: SYCL 2020
III. Optional lambda kernel naming

Before:
1 class UniqueKernelName;
2 q.submit([&](sycl::handler& cgh){
3 cgh.parallel_for <UniqueKernelName >(...);
4 });

After:
1 q.submit([&](sycl::handler& cgh){
2 cgh.parallel_for(...);
3 });

▶ Massive convenience improvement!
▶ Highly non-trivial in multipass scenarios (C++ does not define unique names for

lambdas)
▶ Just works in integrated multipass; in explicit multipass relies on clang HIP/CUDA

__builtin_get_device_side_mangled_name()
▶ Cannot work in nvc++-flow for non-CUDA/non-CPU targets

26 / 35



Practical impact:
Challenges when transitioning oneAPI code from DPC++ to hipSYCL

▶ HeCBench4: Many benchmarks (>280) gathered from various sources
▶ Multiple programming models, including HIP, CUDA, SYCL
▶ SYCL ports originally developed for DPC++ and oneAPI
▶ ⇒ Can investigate performance compared to native models, and portability issues

between DPC++ and hipSYCL

4https://github.com/zjin-lcf/HeCBench
27 / 35

https://github.com/zjin-lcf/HeCBench


Porting HeCBench to
hipSYCL

▶ 209 benchmarks work with DPC++, out-of-the box 91 work with hipSYCL
▶ Recurring problems prevent most of the remaining from compiling:

▶ HeCBench uses CL/sycl.hpp and the ::sycl namespace. The SYCL specification
is ambiguous; in hipSYCL CL/sycl.hpp only exposes ::cl::sycl

▶ fixing this increases the number of compiling benchmarks to 114.
▶ Some benchmarks use SYCL 2020 functionality sycl::ext::oneapi namespace,

even though it should be in ::sycl (e.g. atomic_ref).
▶ fixing increases number of compiling benchmarks to 122.

▶ In hipSYCL (or DPC++ in CUDA interop scenarios), vector aliases (e.g.
sycl::float2) collide with CUDA types (::float2) if using namespace sycl

▶ Some benchmarks are both using namespace sycl and using namespace std
which causes collisions (e.g. std::queue, sycl::queue)

▶ Some non-standard APIs are used (e.g. sub_group::shuffle())
▶ Subtle differences in implicit type conversion behavior, e.g. in vec constructor

28 / 35



Addressing portability issues

▶ How to improve SYCL namespace usage? → Best practice guide & spec
clarifications

▶ Non-standard APIs → should become better as implementations move fully to
SYCL 2020

▶ Implicit conversion behavior → spec clarifications?

▶ The good: Most issues are not due to lack of functionality in hipSYCL, but
due to recurring, simple issues

▶ The bad: The fact that the basics like header and namespace usage
already cause problems is worrying for the SYCL ecosystem as a whole!

29 / 35



HeCBench performance

▶ hipSYCL within 20% of native
model

▶ hipSYCL outperforms HIP by 3x
for RSBench; this indicates
suboptimal performance with the
HIP version.

30 / 35



Libraries: oneMKL

31 / 35



oneMKL hipSYCL support

▶ We have upstreamed support for oneMKL BLAS with hipSYCL on NVIDIA, CPU
▶ We have upstreamed new rocBLAS backend for hipSYCL
▶ rocRAND backend PR open
▶ oneMKL mainly requires backend interoperability; stresses ability of SYCL

implementation to expose backend objects
▶ Leverage hipSYCL enqueue_custom_operation extension which has been

shown to outperform SYCL 2020 host_task for this purpose5

5https://github.com/illuhad/hipSYCL/blob/develop/doc/enqueue-custom-operation.md
32 / 35

https://github.com/illuhad/hipSYCL/blob/develop/doc/enqueue-custom-operation.md


oneMKL on GTX 1080 Ti

▶ DPC++ affected by performance
bug (only fixed recently after
submission deadline)

▶ oneMKL with hipSYCL
competitive with native cuBLAS
until very small problem sizes

33 / 35



oneMKL on Radeon Pro VII

▶ oneMKL with hipSYCL
competitive with native rocBLAS

▶ oneMKL and rocBLAS both seem
to show overhead of ≈ 10−4 s.

34 / 35



Conclusion

▶ First attempt to implement oneAPI independently from DPC++
▶ We have shown that hipSYCL can support

▶ SYCL 2020
▶ oneAPI building blocks (Level Zero)
▶ oneAPI libraries (oneMKL)

▶ …and deliver competitive performance
▶ ⇒ It is indeed possible to have a multi-compiler ecosystem for oneAPI!
▶ Spec ambiguities, design differences, non-standard APIs and not well-known best

practices can hinder portability in practice
▶ Portability across implementations requires explicit attention by the programmer!

35 / 35


